Given random variables like below:
$Y \sim \operatorname{Gamma}(a + 1, 1)$
$U_0 \sim \operatorname{Unif}(0,1)$
$U = U_0^\frac1a$
If $Y$ and $U_0$ is independent,
How can I proof $X=YU \sim \operatorname{Gamma}(a, 1)$ ?
I tried to solve this problem with theorem $f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v))|J|$
But I'm confusing what should be preimage.