Evaluate $$I=\int_0^1 \frac{\ln(1-x^2)\arcsin^2 x}{x^2} {\rm d}x.$$
Maybe, we can make a substitution $x=:\sin u, u\in [0,\pi/2]$. Then $$I=2\int_0^{{\pi}/2}\frac{u^2\cos u\ln\cos u}{\sin^2 u}{\rm d}u.$$ Can we go on from here?
Evaluate $$I=\int_0^1 \frac{\ln(1-x^2)\arcsin^2 x}{x^2} {\rm d}x.$$
Maybe, we can make a substitution $x=:\sin u, u\in [0,\pi/2]$. Then $$I=2\int_0^{{\pi}/2}\frac{u^2\cos u\ln\cos u}{\sin^2 u}{\rm d}u.$$ Can we go on from here?