It is enough find a uniform bound for $x \in [0,\pi]$ and $N \in \mathbb{N}$ using straightforward estimates.
We have
$$\tag{*}\left|\sum_{n=1}^N \frac{\sin nx}{n}\right| = \left|\sum_{n=1}^M \frac{\sin nx}{n}+ \sum_{n=M+1}^N \frac{\sin nx}{n}\right| \leqslant \sum_{n=1}^M \frac{|\sin nx|}{n}+ \left|\sum_{n=M+1}^N \frac{\sin nx}{n}\right|$$
where $M = \lfloor \frac{1}{x}\rfloor$ and $M \leqslant \frac{1}{x} < M+1$.
Since $|\sin nx| \leqslant n|x| = nx$, we have for the first sum on the RHS of (*),
$$ \sum_{n=1}^M \frac{|\sin nx|}{n} \leqslant Mx \leqslant 1$$
The second sum can be handled using summation by parts and a well-known bound for $S_N(x) = \sum_{n=1}^N \sin nx$.
We have
$$\left|\sum_{n=M+1}^N \frac{\sin nx}{n} \right| = \left|\frac{S_N(x)}{N} - \frac{S_M(x)}{M+1}+ \sum_{n=M+1}^{N-1} S_n(x) \left(\frac{1}{n} - \frac{1}{n+1} \right) \right|$$
Since $|S_N(x)| \leqslant 1/|\sin(x/2)|$ it follows that
$$\left|\sum_{n=M+1}^N \frac{\sin nx}{n} \right| \leqslant \frac{1}{|\sin(x/2)|}\left(\frac{1}{N} + \frac{1}{M+1} + \sum_{n=M+1}^{N-1}\left(\frac{1}{n} - \frac{1}{n+1} \right) \right) = \frac{2}{(M+1)|\sin(x/2)|}$$
Since $|\sin(x/2)| = \sin(x/2) \geqslant (2/\pi)(x/2) = x/ \pi$ for $x$ in this range, it follows that
$$\left|\sum_{n=M+1}^N \frac{\sin nx}{n} \right| \leqslant \frac{2}{(M+1)|\sin(x/2)|} \leqslant \frac{2 \pi}{(M+1)x} \leqslant 2\pi$$
Thus, for all $x \in [0,\pi]$ and for all $N \in \mathbb{N}$,
$$\left|\sum_{n=1}^N \frac{\sin nx}{n}\right| \leqslant 2\pi + 1$$