I would like to show the commutativity property of vector addition:
$$\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{v}+\overrightarrow{u},$$ without using coordinates.
I know that the idea is to properly represent $\overrightarrow{u}$ and $\overrightarrow{v}$. Writing $$\overrightarrow{u}=\overrightarrow{AB}\quad \textrm{and}\quad \overrightarrow{v}=\overrightarrow{BC}$$ it follows $$\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{AC}.$$
Now, given $\overrightarrow{v}$ and the point $A$ there exists a unique point $D$ such that $$\overrightarrow{v}=\overrightarrow{AD}.$$ Also, given $\overrightarrow{u}$ and the point $D$ there exists a unique point $C^\prime$ such that $$\overrightarrow{u}=\overrightarrow{DC^\prime}.$$ It suffices to show that $C=C^\prime$, for in this case:
$$\overrightarrow{v}+\overrightarrow{u}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}.$$ Geometrically, it is clear that $C=C^\prime$ but how to prove it?
Thanks.
