Given probability density function
$$p(x|\phi)=\begin{cases}\dfrac{\phi}{x^2}&\phi<x<\infty\\0&\text{others}\end{cases}.$$
I want to find an estimation for the $\phi$ parameter with the maximum likelihood estimator.
First, I find the likelihood function as below $$L(\phi)=\dfrac{\phi}{{x_1}^2}\dfrac{\phi}{{x_2}^2}\ldots\dfrac{\phi}{{x_n}^2}=\dfrac{\phi^n}{\prod\limits_{i=1}^n{x_i}^2}.$$
Then I determine the log likelihood $\ln L(\phi)$,
$$\ln L(\phi)=n\ln \phi-2\ln\prod\limits_{i=1}^n{x_i}.$$
Now, I try to find the maximum of the log likelihood,
$$\dfrac{d}{d\phi} \ln L(\phi)=\dfrac{n}{\phi}=0.$$
Then I have $n=0$.
Problem: I can't find the $\hat\phi$. How to find the parameter estimation of $\phi$ using maximum likelihood estimator?
Please help me. Thanks before.