I am stuck with computing the following limit: \begin{align} \lim_{ n \to \infty} E \left[ \left(E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U \right] \right)^2 \right]. \end{align}
In the above expression, $X$ given $U$ follows Poisson with parameter $U$ and where $U$ is a Chi-square of degree $n$.
Here is what I tried:
Suppose we let \begin{align} V_n =\left(E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U \right] \right)^2 \end{align} Then, using Jensen's inequality \begin{align} V_n \le E \left[ \frac{X}{n} + \frac{1}{2} \, \Big | U \, \right] = \frac{U}{n}+\frac{1}{2} \end{align} Moreover, we have that $E \left[ \frac{U}{n}+\frac{1}{2} \right]=1+\frac{1}{2}$. Therefore, by the dominated convergence theorem we have that \begin{align} \lim_{n \to \infty} E[ V_n ]= E[ \lim_{n \to \infty} V_n ] \end{align}
Therefore, assuming everything up to here is correct, to compute the limit we have to find \begin{align} \lim_{n \to \infty} V_n&= \lim_{n \to \infty} \left(E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U \right] \right)^2\\ &= \left( \lim_{n \to \infty} E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U \right] \right)^2 \end{align}
This is the place where I am stuck. Is it simply another applications dominated convergence theorem? If so, then I think the answer is \begin{align} \lim_{ n \to \infty} E \left[ \left(E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U \right] \right)^2 \right]=\frac{1}{2}. \end{align}
What I mean by another application of dominating convergence theorem is that for every $u>0$
\begin{align} E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U=u \right] &\le \sqrt{ E \left[ \frac{X}{n} + \frac{1}{2} \, \Big | \, U=u \right]}\\ &= \sqrt{ \frac{u}{n} + \frac{1}{2} }\\ &= \sqrt{ u + \frac{1}{2}} \end{align}
Therefore,
\begin{align} E \left[ \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U=u \right]= E \left[ \lim_{n \to \infty} \sqrt{ \frac{X}{n} + \frac{1}{2}} \, \Big | \, U=u \right]= \frac{1}{2}. \end{align}
Is this a correct sequence of steps? I feel a bit uneasy about the second application of the dominated convergence theorem.
https://math.stackexchange.com/questions/1536459/expected-value-of-square-root-of-poisson-random-variable
though you definitely carefully want to control the error terms; I suspect your final term will come out to be 3/2 but I am not fully sure; maybe you can try simulating it to see what you expect to get?
– E-A Apr 30 '19 at 16:43