See update with generalization at end
I find it a very nice observation. If I translate this in my style of notation, where I give the vector of exponents-of-
$2$ to be divided in the "Syracuse"-style transformation
$$ a_2 = { 3a_1+1\over 2^{A_1}} \qquad \text{ on odd $a_1$, and $A$ such that $a_2$ is odd too }$$
or more general
$$ a_{k+1} = { 3a_k+1\over 2^{A_k}} $$
then I document the vector of
$A_1,A_2,...$ occuring by iteration of
$a_1$ downto
$1$.
Some examples of your observation give then the vectors
******
Ev1=TFind_T(2^5-1) [1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1, 5, 4]
Ev2=TFind_T(2^6-1) [1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1, 5, 4]
******
Here the vectors of exponents for $a_1=2^5-1$ and for $a_1=2^6-1$ are nearly perfectly equal, only on two positions they differ (which are marked by the stars) and remarkably complementaring them out with leaving one unit difference in the whole vector-sum
Here are a couple more examples:
*****
Ev1=TFind_T(2^11-1) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 2, 1, 2, 3, 2, 1, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 3, 3, 3, 1, 2, 3, 4]
Ev2=TFind_T(2^12-1) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 2, 1, 2, 3, 2, 1, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 3, 3, 3, 1, 2, 3, 4]
*****
******
Ev1=TFind_T(2^13-1) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 5, 1, 1, 1, 1, 3, 1, 1, 4, 3, 1, 2, 2, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 3, 3, 3, 1, 2, 3, 4]
Ev2=TFind_T(2^14-1) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 5, 1, 1, 1, 1, 3, 1, 1, 4, 3, 1, 2, 2, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 3, 3, 3, 1, 2, 3, 4]
******
*****
Ev1=TFind_T(2^15-1) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 3, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 3, 1, 4, 1, 2, 2, 2, 10, 2, 1, 3, 1, 2, 3, 4]
Ev2=TFind_T(2^16-1) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 3, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 3, 1, 4, 1, 2, 2, 2, 10, 2, 1, 3, 1, 2, 3, 4]
*****
Update Generalization to more cases (heuristic, not yet proven)
Let $j,A \in \mathbb N$ then
let $k = 4j+1$ then with
$$a_1=k \cdot 2^{2A+1} -1 \qquad \qquad b_1=k \cdot 2^{2A+2} -1 \\
\text{Collatz_length}(a_1) = \text{Collatz_length}(b_1)-1 $$
let $k = 4j-1$ then with
$$a_1=k \cdot 2^{2A+1} -1 \qquad \qquad b_1=k \cdot 2^{2A} -1 \\
\text{Collatz_length}(a_1) = \text{Collatz_length}(b_1)+1 $$
and the vector of exponents have the same near-identical relation as seen in my examples above