$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\int_{0}^{\pi/2}
\cos^{p + q - 2}\,\pars{\theta}
\cos\pars{\bracks{p - q}\theta}\,\dd\theta}
\\[5mm] = & \
\Re\int_{0}^{\pi/2}\cos^{p + q - 2}\,\pars{\theta}
\expo{\ic\pars{p - q}\theta}\,\,\dd\theta
\\[5mm] = & \
\left.\Re\int_{\theta\ =\ 0}^{\theta\ =\ \pi/2}
\pars{z^{2} + 1 \over 2z}^{p + q - 2}\,z^{p - q}\,\,
{\dd z \over \ic z}\right\vert_{z\ =\ \exp\pars{\ic\theta}}
\end{align}
The last expression is an integration along an arc in the first quadrant of the complex plane.
The integration can be extended along
$\ds{\braces{z \mid \Re\pars{z} = 0,\ \Im\pars{z} \in \pars{0,1}}}$ and $\ds{\braces{z \mid \Re\pars{z} \in \pars{0,1},\ \Im\pars{z} = 0}}$. The last piece doesn't yield any contribution to the integration because the integrand is imaginary. The whole contour doesn't include any pole. Therefore,
\begin{align}
& \color{#44f}{\int_{0}^{\pi/2}
\cos^{p + q - 2}\,\pars{\theta}
\cos\pars{\bracks{p - q}\theta}\,\dd\theta}.
\\[5mm] = & \
\left.{1 \over 2^{p + q - 2}}\,\,\Im\int_{\theta\ =\ 0}^{\theta\ =\ \pi/2}
\pars{1 + z^{2}}^{p + q - 2}\,\,z^{1 - 2q}\,\,
\dd z\right\vert_{z\ =\ \exp\pars{\ic\theta}}
\\[5mm] = & \
-\,{1 \over 2^{p + q - 2}}\,\,\Im\int_{1}^{0}
\pars{1 - y^{2}}^{p + q - 2}\,\,y^{1 - 2q}\,\,\overbrace{\pars{\expo{\ic\pi/2}}^{1 - 2q}\,\,\,\ic}^{\ds{-\expo{-\ic\pi q}}}
\,\dd y
\\[5mm] = & \ {\sin\pars{\pi q} \over 2^{p + q - 2}}
\int_{0}^{1}y^{1/2 - q}\,\,\pars{1 - y}^{p + q - 2}
\,\,\,{1 \over 2}\,y^{-1/2}\,\,\dd y
\\[5mm] = & \ {\sin\pars{\pi q} \over 2^{p + q - 1}}
\int_{0}^{1}y^{-q}\,\,\pars{1 - y}^{\,p + q - 2}
\,\,\,\dd y
\\[5mm] = & \ {\sin\pars{\pi q} \over 2^{p + q - 1}}
{\Gamma\pars{-q + 1}\Gamma\pars{p + q - 1} \over \Gamma\pars{p}}
\\[5mm] = & \ {1 \over 2^{p + q - 1}}\
\overbrace{\bracks{\sin\pars{\pi q}\Gamma\pars{1 - q}}}
^{\ds{\pi/\Gamma\pars{q}}}\
{\Gamma\pars{p + q}/\pars{p + q - 1} \over \Gamma\pars{p}}
\\[5mm] = & \ {\pi \over 2^{p + q - 1}\,\pars{p + q - 1}}{1 \over \Gamma\pars{p}\Gamma\pars{q}/\Gamma\pars{p + q}}
\\[5mm] = & \ \bbx{\color{#44f}{{\pi \over
\pars{p + q - 1}2^{p + q - 1}\,\on{B}\pars{p, q}}}}
\\ &
\end{align}