\begin{align}M_x\left(t \right)&=\sum_{x=k}^\infty{\binom{x-1}{k-1}}p^kq^{x-k}e^{tx}\\& = (e^tp)^k\sum_{x=0}^\infty\binom{k-1+x}{k-1}(e^tq)^x\end{align}
How do we get $\sum_{x=0}^\infty\binom{k-1+x}{k-1}(e^tq)^x = (1+qe^t)^{-k} ?$
\begin{align}M_x\left(t \right)&=\sum_{x=k}^\infty{\binom{x-1}{k-1}}p^kq^{x-k}e^{tx}\\& = (e^tp)^k\sum_{x=0}^\infty\binom{k-1+x}{k-1}(e^tq)^x\end{align}
How do we get $\sum_{x=0}^\infty\binom{k-1+x}{k-1}(e^tq)^x = (1+qe^t)^{-k} ?$