Is there any way to solve the following integral?
$$\int_0^\infty \exp\Bigl(-\frac{(y^2 - x^2)^2}{x^2}\Bigr) \mathrm{d}x$$
Assume $y>0$.
Is there any way to solve the following integral?
$$\int_0^\infty \exp\Bigl(-\frac{(y^2 - x^2)^2}{x^2}\Bigr) \mathrm{d}x$$
Assume $y>0$.
Following the aproach of How to evaluate $\int_{0}^{+\infty}\exp(-ax^2-\frac b{x^2})\,dx$ for $a,b>0$ I got
$$\begin{align}I=&\int_0^\infty \exp\bigl(-\frac{(y^2-x^2)^2}{x^2}\bigr)\mathrm{d}x\\ =& \begin{Vmatrix}t =\frac{x}{y}\end{Vmatrix}=y\int_0^\infty \exp\bigl(-(t-t^{-1})^2y^2\bigr)\mathrm{d}t = y\biggl(\int_0^1+\int_1^\infty\biggr) \exp\bigl(-(t-t^{-1})^2y^2\bigr)\mathrm{d}t\\ =&\begin{Vmatrix}s=\frac{1}{t}\text{ in first integral}\end{Vmatrix} =\int_1^\infty \frac{1}{s^2}\exp\bigl(-(s-s^{-1})^2y^2\bigr)\mathrm{d}s+\int_1^\infty \exp\bigl(-(t-t^{-1})^2y^2\bigr)\mathrm{d}x\\ =&\int_1^\infty (1+t^{-2})\exp\bigl(-(t-t^{-1})^2y^2\bigr)\mathrm{d}x =\begin{Vmatrix}z=t-\frac{1}{t}\end{Vmatrix}=y\int_0^\infty \exp(-z^2y^2)\mathrm{d}z\\ =&y\frac{1}{2}\sqrt{\frac{\pi}{y^2}}=\frac{\sqrt{\pi}}{2} \end{align}$$
Thanks again, @Zacky.