How to show the following limit? $${\lim_{n\to\infty}{e^{-t\sqrt{n}}\bigg({\frac{1}{1-\frac{t\sqrt{n}}{n}}\bigg)}^n}\large}=e^{\frac{t}{2}}$$
I tried Taylor expansion and tried exponentiating. But I do not see how to go on.
How to show the following limit? $${\lim_{n\to\infty}{e^{-t\sqrt{n}}\bigg({\frac{1}{1-\frac{t\sqrt{n}}{n}}\bigg)}^n}\large}=e^{\frac{t}{2}}$$
I tried Taylor expansion and tried exponentiating. But I do not see how to go on.
$$\log\bigg(\big(1-\frac{t}{\sqrt{n}}\big)^{-n}\bigg)+\log{\exp(-t\sqrt{n }})=-n\log{\left(1-\frac{t}{\sqrt{n}}\right)}-t\sqrt{n}=t\sqrt{n}+\frac{t^2}{2}-t\sqrt{n}+o(1)=\frac{t^2}{2}+o(1)$$
I get $\exp{\left(\frac{t^2}{2}\right)}$ as limit.