I have to prove $\lim\limits_{n \to \infty} \sum_\limits{i=1}^n \frac{(-1)^{i+1}}{i} = \ln2$.
The hints I have are:
$\lim\limits_{n \to \infty} \sum_\limits{i=1}^n \frac{1}{i} - \ln(n) = c < \infty$
$\sum_\limits{i=1}^{2n} \frac{(-1)^{i+1}}{i} = \sum_\limits{i=1}^{2n} \frac {1}{i} - 2\sum_\limits{i=1}^{2n} \frac{1}{2i} $
I never calculated any limits with sum in the formula, nor I see how the tips are of any help.
Would appreciate a few hints and tips!