$\color{brown}{\textbf{Version of 03.05.19}}$
Are known the identities
$$\begin{cases}
\cosh^2t-\sinh^2t = 1\\
2\cosh^2t = \cosh2t + 1\\
2\sinh^2t = \cosh2t -1\\
2\sinh t\cosh t = \sinh 2t\\
\cosh^{-2}t = 1-\tanh^2x\\
\sinh^{-2}t = \coth^2x-1\\
(\tanh x)' = \cosh^{-2}t\\
(\coth x)' = -\sinh^{-2}t.
\end{cases}\tag1$$
One can get
$$\cosh^{\large^-\frac23}x + \sinh^{\large-^\frac23}x
= \sqrt[{\large3}]{1-\tanh^2x} + \sqrt[{\large3}]{\coth^2x-1},$$
$$\cosh^{\large^-\frac23}x + \sinh^{\large-^\frac23}x
= \sqrt[{\large3}]{\coth x - \tanh x}
(\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}),\tag2$$
$$\cosh2x = \dfrac{\cosh^2x+\sinh^2x}{\cosh^2x-\sinh^2x}
=\dfrac{\coth x + \tanh x}{\cot x - \tanh x}.\tag3$$
Therefore,
$$I = \int\cosh2x\sqrt{\cosh^{\large^-\frac23}x + \sinh^{\large^-\frac23}x\,}\,dx,$$
$$I = \int\dfrac{\coth x + \tanh x}{(\coth x - \tanh x)^{\large^\frac56}} \sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}\,dx.\tag4$$
Taking in account that
$$\left(\frac65(\sinh x \cosh x)^{\large^-\frac56}\right)'
= \dfrac{\coth x + \tanh x}{(\coth x - \tanh x)^{\large\frac56}}$$
(see also Wolfram Alpha),
$$\left(\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}\right)'
= \dfrac{\left(\coth^{\large^-\frac23}x (1-\coth^2x)
+ \tanh^{\large^-\frac23}x (1-\tanh^2x)\right)}{6\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}}$$
$$= -\dfrac{(\coth x - \tanh x)
\left(\sqrt[{\large3}]{\coth x} - \sqrt[{\large3}]{\tanh x}\right)}{6\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}},$$
is possible the integration by parts:
$$I(x) = -\dfrac65 \int\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}\,\mathrm d\left((\sinh x \cosh x)^{\large^-\frac56}\right),$$
$$I(x) = \dfrac35 I_1(x) - \dfrac65\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}\,(\sinh x \cosh x)^{\large^-\frac56},\tag5$$
where
$$I_1(x) = \int \left((\sinh x \cosh x)^{\large^-\frac56}\right) \dfrac{\mathrm d\left(\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}\right)}{\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}}.
\tag6$$
Let
$$\left(\sqrt[{\large3}]{\coth x} - \sqrt[{\large3}]{\tanh x}\right)^2 = y,\tag7$$
then
$$\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}
= \sqrt{y+4}\,$$
$$(\sinh x \cosh x)^{-1} = \dfrac{\cosh^2x - \sinh^2x}{\sinh x \cosh x} = \coth x - \tanh x = \sqrt y (y+3),$$
$$I(x) = \dfrac3{10} J\left(\left(\sqrt[{\large3}]{\coth x} - \sqrt[{\large3}]{\tanh x}\right)^2\right) - \dfrac65\sqrt{\sqrt[{\large3}]{\coth x} + \sqrt[{\large3}]{\tanh x}}\,(\sinh x \cosh x)^{\large^-\frac56},\tag8$$
where
$$J(y) = \int (y+3)^{\large^\frac56}(y+4)^{\large^-\frac34}\,y^{\large^\frac5{12}}\,dy\tag9,$$
wherein the last integral can be expressed in the closed form of
$$\begin{align}
&J(y) = \frac2{51} y^{\large^\frac5{12}} \left(-17\cdot 3^{\large^\frac56} F_1\left(\frac5{12}; \frac34, \frac16; \frac{17}{12};-y, -\frac y3\right)\right.\\
& + \left. 5\cdot 3^{\large^\frac56} y F_1\left(\frac{17}{12}; \frac34, \frac16;\frac{29}{12}; -y, -\frac y3\right) + 17 (y+1)^{\large^\frac14} (y+3)^{\large^\frac56}\right) + \mathrm{constant}
\end{align}\tag{10}$$
via the Appell hypergeometric function of two variables.
Formulas $(8),(10)$ $\color{brown}{\textbf{present the given integral in the closed form}}.$