I'm getting familiar with basic indefinite integrals and these are the hardest ones I've met so far:
$1.$ $$\int \frac{\sqrt{x}}{x^2\left(\sqrt{x+1}+\sqrt{x}\right)}\mathrm dx$$
$2.$ $$\int \frac{\sqrt[3]{x+2}-\sqrt[3]{x}}{x^2\left(\sqrt[3]{x+2}+\sqrt[3]{x}\right)}\mathrm dx$$
My attempt for the first integral:
\begin{align} \int \frac{\sqrt{x}}{x^2\left(\sqrt{x+1}+\sqrt{x}\right)}\mathrm dx &= \int \frac{\sqrt{x}\left(\sqrt{x+1}-\sqrt{x}\right)}{x^2\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\mathrm dx \\ &= \int \frac{\sqrt{x}\sqrt{x+1}-x}{x^2}\mathrm dx \end{align}
Now, I can split it into two integrals. The problem is with:
$$\int \frac{\sqrt{x}\sqrt{x+1}}{x^2}\mathrm dx$$
and the major problem is that I don't know how to evaluate integrals that have some distinct roots with different values inside those roots. The second integral seems even harder.
If speaking of "different values under roots", I am only familiar with evaluating such integrals:
$$\int \frac{\left(\sqrt{\frac{x+2}{x-1}}-1\right)^2}{3\left(\sqrt{\frac{x+2}{x-1}}+2\right)}\mathrm dx$$ because there's a simple algorithm that I can follow to evaluate it.
Any hints? Please note that the course I am taking does not anticipate usage of hyperbolic functions. I am not familiar with them.
EDIT: \begin{align}\int \frac{\sqrt{x}\sqrt{x+1}}{x^2}\mathrm dx&= \int \frac{\sqrt{x^2+x}}{x^2}\mathrm dx\\&= \int \frac{x^2 + x }{x^2\sqrt{x^2+x}}\mathrm dx\\&= \int \frac{x+1}{x\sqrt{x^2+x}}\mathrm dx\end{align}
And now, Euler's substitution should work.