-3

Find the values of $a>0$ for which the improper integral

$$\int_{0}^{\infty}\frac{\sin x}{x^{a}}dx$$

converges.

Will the Taylor series expansion of $\sin$ be a better method than testing the integral?

zaira
  • 2,386
  • 2
  • 14
  • 37
sejy
  • 343
  • 3
  • 13

2 Answers2

1

We know that $-1\le\sin(x)\le 1$ and so we can approximate the integral with: $$\int_0^\infty\frac{\sin(x)}{x^a}dx\le\int_0^\infty\frac{1}{x^a}$$ and this integral is convergent for $a>1$ so this narrows our region down to somewhere in $0<a<1$

Henry Lee
  • 12,554
  • 2
    It converges also for $\alpha=1$ – DINEDINE Mar 18 '19 at 14:16
  • 1
    @ Henry Lee You should better consider absolute values in your inequalitiy: $| \int_0^\infty \frac{\sin(x)}{x^\alpha},dx | \le \int_0^\infty |\frac{\sin(x)}{x^\alpha}|,dx\le \int_0^\infty \frac{1}{x^\alpha},dx$ – Dr. Wolfgang Hintze Mar 18 '19 at 14:50
  • 1
    For general $\alpha$ the integral defines the function $\cos \left(\frac{\pi \alpha}{2}\right) \Gamma (1-\alpha)$ by analytic continuation. – Dr. Wolfgang Hintze Mar 18 '19 at 14:53
1

For $a \ge 2$ the singularity at $0$ is non-integrable. For $1 < a < 2$ it's absolutely integrable both at $0$ and at $\infty$. For $0 < a \le 1$ the series $\sum_{n=1}^\infty \int_{n\pi}^{(n+1)\pi} \frac{\sin(x)}{x^a}\; dx$ is an alternating series.

Robert Israel
  • 470,583