If the solution in terms of hypergeometric functions
$$I=\int\frac{\sin^{-1} (x)}{(1-x^2)^{\frac{3}{4}}} \,\mathrm{d}x$$ $$I=-\frac{1}{2} \sqrt[4]{1-x^2} \left(\frac{\pi \sqrt{1-x^2} \,
_3F_2\left(\frac{3}{4},\frac{3}{4},1;\frac{5}{4},\frac{7}{4};1-x^2\right)}{\sqrt
{2} \Gamma \left(\frac{5}{4}\right) \Gamma \left(\frac{7}{4}\right)}+4 x \,
_2F_1\left(\frac{3}{4},1;\frac{5}{4};1-x^2\right) \sin ^{-1}(x)\right)$$ is considered to be not acceptable, then approximations are required.
To my humble opinion, the most promising comes from @Carlos E. González C.'s answer
$$x=\sin(y) \implies I=\int\frac{y}{\sqrt{\cos (y)}}\,\mathrm{d}y$$
Expanding $\frac{1}{\sqrt{\cos (y)}}$ as a Taylor series built at $y=0$,we end with
$$\frac{y}{\sqrt{\cos (y)}}=y+\frac{y^3}{4}+\frac{7 y^5}{96}+\frac{139 y^7}{5760}+\frac{5473
y^9}{645120}+\frac{51103 y^{11}}{16588800}+\frac{34988647
y^{13}}{30656102400}+O\left(y^{15}\right)$$ Integrating termwise, then
$$I=\frac{y^2}{2}+\frac{y^4}{16}+\frac{7 y^6}{576}+\frac{139 y^8}{46080}+\frac{5473
y^{10}}{6451200}+\frac{51103 y^{12}}{199065600}+\frac{34988647
y^{14}}{429185433600}+O\left(y^{16}\right)$$ where $y=\sin^{-1} (x)$.
Now, a few values for $$J=\int_0 ^a\frac{\sin^{-1} (x)}{(1-x^2)^{\frac{3}{4}}} \,\mathrm{d}x$$
$$\left(
\begin{array}{ccc}
a & \text{approximation} & \text{exact} \\
0.05 & 0.0012514 & 0.0012514 \\
0.10 & 0.0050231 & 0.0050231 \\
0.15 & 0.0113677 & 0.0113677 \\
0.20 & 0.0203761 & 0.0203761 \\
0.25 & 0.0321816 & 0.0321817 \\
0.30 & 0.0469674 & 0.0469674 \\
0.35 & 0.0649765 & 0.0649765 \\
0.40 & 0.0865271 & 0.0865271 \\
0.45 & 0.1120350 & 0.1120346 \\
0.50 & 0.1420440 & 0.1420443 \\
0.55 & 0.1772810 & 0.1772811 \\
0.60 & 0.2187270 & 0.2187274 \\
0.65 & 0.2677510 & 0.2677515 \\
0.70 & 0.3263300 & 0.3263310 \\
0.75 & 0.3974690 & 0.3974711 \\
0.80 & 0.4860560 & 0.4860678 \\
0.85 & 0.6009030 & 0.6009565 \\
0.90 & 0.7606450 & 0.7609314 \\
0.95 & 1.0188000 & 1.0209564
\end{array}
\right)$$