$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\mrm{f}_{Z}\pars{z} & =
\int_{0}^{\infty}\mrm{f}_{X}\pars{z + y}\mrm{f}_{Y}\pars{y}
\bracks{z + y > 0}\dd y
\\[5mm] & =
\int_{0}^{\infty}\lambda_{1}\expo{-\lambda_{1}\pars{z + y}}
\lambda_{2}\expo{-\lambda_{2}y}\bracks{y > -z}\dd y
\\[5mm] & =
\lambda_{1}\lambda_{2}\expo{-\lambda_{1}z}
\int_{0}^{\infty}\expo{-\pars{\lambda_{1} + \lambda_{2}}y}
\bracks{y > - z}\dd y
\\[8mm] & =
\lambda_{1}\lambda_{2}\expo{-\lambda_{1}z}\left\{%
\bracks{z < 0}\int_{-z}^{\infty}\expo{-\pars{\lambda_{1} + \lambda_{2}}y}\dd y\right.
\\[2mm] &
\phantom{=
\lambda_{1}\lambda_{2}\expo{-\lambda_{1}z}\,\,\,}
\left.\mbox{} + \bracks{z > 0}\int_{0}^{\infty}
\expo{-\pars{\lambda_{1} + \lambda_{2}}y}\dd y\right\}
\\[8mm] & =
\lambda_{1}\lambda_{2}\expo{-\lambda_{1}z}\bracks{%
\bracks{z < 0}{\expo{\pars{\lambda_{1} + \lambda_{2}}z} \over
\lambda_{1} + \lambda_{2}} +
\bracks{z > 0}{1 \over \lambda_{1} + \lambda_{2}}}
\\[5mm] & =
\bbx{{\lambda_{1}\lambda_{2} \over \lambda_{1} + \lambda_{2}}\braces{\bracks{z < 0}\,\expo{\lambda_{2}z} +
\bracks{z > 0}\expo{-\lambda_{1}z}}}
\end{align}