The following proof is inspired by my answer to math.stackexchange question
https://math.stackexchange.com/q/1340405/,
which in turn is inspired by the probabilistic method from extremal
combinatorics. It is fully elementary and almost combinatorial ("almost"
because it involves a simple limit argument at one point).
We begin with notations:
Let $\mathbb{N}$ be the set $\left\{ 0,1,2,\ldots\right\} $.
For each $n\in\mathbb{N}$, let $\left[ n\right] $ denote the set $\left\{
1,2,\ldots,n\right\} $.
We also recall the following simple fact (Lemma 5 in my answer to
math.stackexchange question https://math.stackexchange.com/q/1340405/):
Lemma 1. Let $Q$ be a finite totally ordered set. Let $J$ be a subset of
$Q$. Let $r\in J$. Let $S$ be the set of all permutations of $Q$. Then,
\begin{equation}
\left\vert \left\{ \sigma\in S\ \mid\ \sigma\left( r\right) >\sigma\left(
j\right) \text{ for all }j\in J\setminus\left\{ r\right\} \right\}
\right\vert =\dfrac{\left\vert S\right\vert }{\left\vert J\right\vert }.
\end{equation}
Now, I shall prove a first positive definiteness statement:
Theorem 2. Let $n\in\mathbb{N}$. Let $E_{1},E_{2},\ldots,E_{n}$ be $n$
finite sets. Let $x_{1},x_{2},\ldots,x_{n}$ be $n$ real numbers. Then,
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert E_{u}\cup E_{v}\right\vert +1}\geq0.
\end{align}
Proof of Theorem 2. Fix some object $r$ that belongs to none of the sets
$E_{1},E_{2},\ldots,E_{n}$. Let $Q$ be the set $E_{1}\cup E_{2}\cup\cdots\cup
E_{n}\cup\left\{ r\right\} $. This is a finite set (since the sets
$E_{1},E_{2},\ldots,E_{n},\left\{ r\right\} $ are finite). We fix some total
order on $Q$.
Let $S$ be the set of all permutations of $Q$. This $S$ is a finite nonempty
set (of size $\left\vert Q\right\vert !$). Thus, $\left\vert S\right\vert $ is
a positive integer.
If $u\in\left[ n\right] $ and $\sigma\in S$, then we say that $\sigma$ is
$u$-friendly if we have $\left( \sigma\left( r\right) >\sigma\left(
j\right) \text{ for all }j\in E_{u}\right) $. Now, we claim the following:
For any $u\in\left[ n\right] $ and $v\in\left[ n\right] $, we have
\begin{equation}
\left\vert \left\{ \sigma\in S\ \mid\ \sigma\text{ is }u\text{-friendly and
}v\text{-friendly}\right\} \right\vert =\dfrac{\left\vert S\right\vert
}{\left\vert E_{u}\cup E_{v}\right\vert +1}.
\label{darij1.pf.t2.1}
\tag{1}
\end{equation}
[Proof of \eqref{darij1.pf.t2.1}: Fix $u\in\left[ n\right] $ and
$v\in\left[ n\right] $. Define a subset $J$ of $Q$ by $J=E_{u}\cup E_{v}
\cup\left\{ r\right\} $. (This is well-defined, since the definition of $Q$
shows that $E_{u}$, $E_{v}$ and $\left\{ r\right\} $ are subsets of $Q$.)
The object $r$ belongs to none of the sets $E_{1},E_{2},\ldots,E_{n}$. Thus,
in particular, $r$ belongs neither to $E_{u}$ nor to $E_{v}$. In other words,
$r\notin E_{u}\cup E_{v}$. This yields
\begin{align}
E_{u}\cup E_{v}=\underbrace{\left( E_{u}\cup E_{v}\cup\left\{ r\right\}
\right) }_{=J}\setminus\left\{ r\right\} =J\setminus\left\{ r\right\} .
\end{align}
Also, $r\in J$; thus, $\left\vert J\setminus\left\{ r\right\} \right\vert
=\left\vert J\right\vert -1$. Now, from $E_{u}\cup E_{v}=J\setminus\left\{
r\right\} $, we obtain $\left\vert E_{u}\cup E_{v}\right\vert =\left\vert
J\setminus\left\{ r\right\} \right\vert =\left\vert J\right\vert -1$, so
that $\left\vert J\right\vert =\left\vert E_{u}\cup E_{v}\right\vert +1$.
For each $\sigma\in S$, we have the following chain of logical equivalences:
\begin{align*}
& \ \left( \sigma\text{ is }u\text{-friendly and }v\text{-friendly}\right)
\\
& \Longleftrightarrow\ \underbrace{\left( \sigma\text{ is }u\text{-friendly}
\right) }_{\substack{\Longleftrightarrow\ \left( \sigma\left( r\right)
>\sigma\left( j\right) \text{ for all }j\in E_{u}\right) \\\text{(by the
definition of "}u\text{-friendly")}}}\wedge\underbrace{\left( \sigma\text{ is
}v\text{-friendly}\right) }_{\substack{\Longleftrightarrow\ \left(
\sigma\left( r\right) >\sigma\left( j\right) \text{ for all }j\in
E_{v}\right) \\\text{(by the definition of "}v\text{-friendly")}}}\\
& \Longleftrightarrow\ \left( \sigma\left( r\right) >\sigma\left(
j\right) \text{ for all }j\in E_{u}\right) \wedge\left( \sigma\left(
r\right) >\sigma\left( j\right) \text{ for all }j\in E_{v}\right) \\
& \Longleftrightarrow\ \left( \sigma\left( r\right) >\sigma\left(
j\right) \text{ for all }j\in\underbrace{E_{u}\cup E_{v}}_{=J\setminus
\left\{ r\right\} }\right) \\
& \Longleftrightarrow\ \left( \sigma\left( r\right) >\sigma\left(
j\right) \text{ for all }j\in J\setminus\left\{ r\right\} \right) .
\end{align*}
Hence,
\begin{align*}
& \left\vert \left\{ \sigma\in S\ \mid\ \sigma\text{ is }u\text{-friendly and
}v\text{-friendly}\right\} \right\vert \\
& =\left\vert \left\{ \sigma\in S\ \mid\ \sigma\left( r\right)
>\sigma\left( j\right) \text{ for all }j\in J\setminus\left\{ r\right\}
\right\} \right\vert \\
& =\dfrac{\left\vert S\right\vert }{\left\vert J\right\vert }\qquad\left(
\text{by Lemma 1}\right) \\
& =\dfrac{\left\vert S\right\vert }{\left\vert E_{u}\cup E_{v}\right\vert
+1}\qquad\left( \text{since }\left\vert J\right\vert =\left\vert E_{u}\cup
E_{v}\right\vert +1\right) .
\end{align*}
This proves \eqref{darij1.pf.t2.1}.]
Now, for each $\sigma\in S$, we have
\begin{align*}
& \left( \sum_{\substack{u\in\left[ n\right] ;\\\sigma\text{ is
}u\text{-friendly}}}x_{u}\right) ^{2}\\
& =\left( \sum_{\substack{u\in\left[ n\right] ;\\\sigma\text{ is
}u\text{-friendly}}}x_{u}\right) \left( \sum_{\substack{u\in\left[
n\right] ;\\\sigma\text{ is }u\text{-friendly}}}x_{u}\right)\\
& =\left(
\sum_{\substack{u\in\left[ n\right] ;\\\sigma\text{ is }u\text{-friendly}
}}x_{u}\right) \left( \sum_{\substack{v\in\left[ n\right] ;\\\sigma\text{
is }v\text{-friendly}}}x_{v}\right) \\
& \qquad\left(
\begin{array}
[c]{c}
\text{here, we have renamed the summation}\\
\text{index }u\text{ as }v\text{ in the second sum}
\end{array}
\right) \\
& =\sum_{\substack{u\in\left[ n\right] ;\\\sigma\text{ is }u\text{-friendly}
}}\sum_{\substack{v\in\left[ n\right] ;\\\sigma\text{ is }v\text{-friendly}
}}x_{u}x_{v}.
\end{align*}
Summing up these equalities over all $\sigma\in S$, we obtain
\begin{align*}
& \sum_{\sigma\in S}\left( \sum_{\substack{u\in\left[ n\right]
;\\\sigma\text{ is }u\text{-friendly}}}x_{u}\right) ^{2}\\
& =\underbrace{\sum_{\sigma\in S}\sum_{\substack{u\in\left[ n\right]
;\\\sigma\text{ is }u\text{-friendly}}}\sum_{\substack{v\in\left[ n\right]
;\\\sigma\text{ is }v\text{-friendly}}}}_{=\sum\limits_{u\in\left[ n\right] }
\sum\limits_{v\in\left[ n\right] }\sum\limits_{\substack{\sigma\in S;\\\sigma\text{ is
}u\text{-friendly}\\\text{and }v\text{-friendly}}}}x_{u}x_{v}\\
& =\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\underbrace{\sum
_{\substack{\sigma\in S;\\\sigma\text{ is }u\text{-friendly}\\\text{and
}v\text{-friendly}}}x_{u}x_{v}}_{=\left\vert \left\{ \sigma\in S\ \mid
\ \sigma\text{ is }u\text{-friendly and }v\text{-friendly}\right\}
\right\vert \cdot x_{u}x_{v}}\\
& =\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }
\underbrace{\left\vert \left\{ \sigma\in S\ \mid\ \sigma\text{ is
}u\text{-friendly and }v\text{-friendly}\right\} \right\vert }
_{\substack{=\dfrac{\left\vert S\right\vert }{\left\vert E_{u}\cup
E_{v}\right\vert +1}\\\text{(by \eqref{darij1.pf.t2.1})}}}\cdot x_{u}x_{v}\\
& =\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{\left\vert
S\right\vert }{\left\vert E_{u}\cup E_{v}\right\vert +1}\cdot x_{u}x_{v}\\
& =\left\vert S\right\vert \cdot\sum_{u\in\left[ n\right] }\sum_{v\in\left[
n\right] }\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert +1}.
\end{align*}
Hence,
\begin{align}
\left\vert S\right\vert \cdot\sum_{u\in\left[ n\right] }\sum_{v\in\left[
n\right] }\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert +1}
=\sum_{\sigma\in S}\underbrace{\left( \sum_{\substack{u\in\left[ n\right]
;\\\sigma\text{ is }u\text{-friendly}}}x_{u}\right) ^{2}}_{\substack{\geq
0\\\text{(since squares are nonnegative)}}}\geq0.
\end{align}
We can divide this inequality by $\left\vert S\right\vert $ (since $\left\vert
S\right\vert $ is a positive integer). We thus obtain
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert E_{u}\cup E_{v}\right\vert +1}\geq0.
\end{align}
This proves Theorem 2. $\blacksquare$
Now, we apply the tensor power trick. The first step is to replace the $1$ in
Theorem 2 by a small rational number $1/m$:
Corollary 3. Let $n\in\mathbb{N}$. Let $E_{1},E_{2},\ldots,E_{n}$ be $n$
finite sets. Let $x_{1},x_{2},\ldots,x_{n}$ be $n$ real numbers. Let $m$ be a
positive integer. Then,
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert E_{u}\cup E_{v}\right\vert +1/m}\geq0.
\end{align}
Proof of Corollary 3. For each $i\in\left[ n\right] $, we define a finite
set $B_{i}$ by $B_{i}=E_{i}\times\left\{ 1,2,\ldots,m\right\} $. Then, for
every $u\in\left[ n\right] $ and $v\in\left[ n\right] $, we have
\begin{align*}
& \underbrace{B_{u}}_{\substack{=E_{u}\times\left\{ 1,2,\ldots,m\right\}
\\\text{(by the definition of }B_{u}\text{)}}}\cup\underbrace{B_{v}
}_{\substack{=E_{v}\times\left\{ 1,2,\ldots,m\right\} \\\text{(by the
definition of }B_{v}\text{)}}}\\
& =\left( E_{u}\times\left\{ 1,2,\ldots,m\right\} \right) \cup\left(
E_{v}\times\left\{ 1,2,\ldots,m\right\} \right) \\
& =\left( E_{u}\cup E_{v}\right) \times\left\{ 1,2,\ldots,m\right\}
\end{align*}
and therefore
\begin{align}
\left\vert B_{u}\cup B_{v}\right\vert & =\left\vert \left( E_{u}\cup
E_{v}\right) \times\left\{ 1,2,\ldots,m\right\} \right\vert =\left\vert
E_{u}\cup E_{v}\right\vert \cdot\underbrace{\left\vert \left\{ 1,2,\ldots
,m\right\} \right\vert }_{=m}\nonumber\\
& =\left\vert E_{u}\cup E_{v}\right\vert \cdot m.
\label{darij1.pf.c3.1}
\tag{2}
\end{align}
But Theorem 2 (applied to $B_{i}$ instead of $E_{i}$) yields
\begin{equation}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert B_{u}\cup B_{v}\right\vert +1}\geq0.
\label{darij1.pf.c3.2}
\tag{3}
\end{equation}
For each $u\in\left[ n\right] $ and $v\in\left[ n\right] $, we have
\begin{align*}
\dfrac{x_{u}x_{v}}{\left\vert B_{u}\cup B_{v}\right\vert +1} & =\dfrac
{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert \cdot m+1}\qquad\left(
\text{by \eqref{darij1.pf.c3.1}}\right) \\
& =\dfrac{1}{m}\cdot\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert
+1/m}.
\end{align*}
Adding up these equalities for all $u\in\left[ n\right] $ and $v\in\left[
n\right] $, we obtain
\begin{align*}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert B_{u}\cup B_{v}\right\vert +1} & =\sum_{u\in\left[ n\right]
}\sum_{v\in\left[ n\right] }\dfrac{1}{m}\cdot\dfrac{x_{u}x_{v}}{\left\vert
E_{u}\cup E_{v}\right\vert +1/m}\\
& =\dfrac{1}{m}\cdot\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right]
}\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert +1/m}.
\end{align*}
Thus, \eqref{darij1.pf.c3.2} rewrites as
\begin{align}
\dfrac{1}{m}\cdot\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right]
}\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert +1/m}\geq0.
\end{align}
We can multiply this inequality by $m$ (since $m$ is positive), and thus
obtain
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert E_{u}\cup E_{v}\right\vert +1/m}\geq0.
\end{align}
This proves Corollary 3. $\blacksquare$
The second part of the tensor power trick is to let $m\rightarrow\infty$:
Theorem 4. Let $n\in\mathbb{N}$. Let $E_{1},E_{2},\ldots,E_{n}$ be $n$
nonempty finite sets. Let $x_{1},x_{2},\ldots,x_{n}$ be $n$ real numbers.
Then,
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert E_{u}\cup E_{v}\right\vert }\geq0.
\end{align}
Proof of Theorem 4. First of all, we notice that $E_{u}\cup E_{v}$ is a
nonempty finite set whenever $u\in\left[ n\right] $ and $v\in\left[
n\right] $ (since $E_{1},E_{2},\ldots,E_{n}$ are nonempty finite sets), and
thus its size $\left\vert E_{u}\cup E_{v}\right\vert $ is a positive integer.
Thus, all the fractions $\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup
E_{v}\right\vert }$ in Theorem 4 are well-defined.
Now, consider a positive integer $m$ going to infinity. Then, $\lim
\limits_{m\rightarrow\infty}\dfrac{r}{q+1/m}=\dfrac{r}{q}$ for every real $r$
and every positive real $q$. Hence,
\begin{align}
\lim\limits_{m\rightarrow\infty}\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup
E_{v}\right\vert +1/m}=\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}
\right\vert }
\end{align}
for every $u\in\left[ n\right] $ and $v\in\left[ n\right] $. Adding up
these equalities for all $u\in\left[ n\right] $ and $v\in\left[ n\right]
$, we obtain
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\lim
\limits_{m\rightarrow\infty}\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup
E_{v}\right\vert +1/m}=\sum_{u\in\left[ n\right] }\sum_{v\in\left[
n\right] }\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert }.
\end{align}
Hence,
\begin{align*}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}
}{\left\vert E_{u}\cup E_{v}\right\vert } & =\sum_{u\in\left[ n\right]
}\sum_{v\in\left[ n\right] }\lim\limits_{m\rightarrow\infty}\dfrac
{x_{u}x_{v}}{\left\vert E_{u}\cup E_{v}\right\vert +1/m}\\
& =\lim\limits_{m\rightarrow\infty}\underbrace{\sum_{u\in\left[ n\right]
}\sum_{v\in\left[ n\right] }\dfrac{x_{u}x_{v}}{\left\vert E_{u}\cup
E_{v}\right\vert +1/m}}_{\substack{\geq0\\\text{(by Corollary 3)}}}\geq
\lim\limits_{m\rightarrow\infty}0=0.
\end{align*}
This proves Theorem 4. $\blacksquare$
Now, let us recall the Iverson bracket notation:
Definition. We shall use the Iverson bracket
notation: If $\mathcal{A}$ is
any statement, then $\left[ \mathcal{A}\right] $ stands for the integer $
\begin{cases}
1, & \text{if $\mathcal{A}$ is true;}\\
0, & \text{if $\mathcal{A}$ is false}
\end{cases}
$ (which is also known as the truth value of $\mathcal{A}$). For
instance, $\left[ 1+1=2\right] =1$ and $\left[ 1+1=1\right] =0$.
Corollary 5. Let $n\in\mathbb{N}$. Let $E_{1},E_{2},\ldots,E_{n}$ be $n$
nonempty finite sets. Let $e$ be any object. Let $x_{1},x_{2},\ldots,x_{n}$ be
$n$ real numbers. Then,
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{\left[ e\in
E_{u}\cap E_{v}\right] }{\left\vert E_{u}\cup E_{v}\right\vert }x_{u}
x_{v}\geq0.
\end{align}
Proof of Corollary 5. For every $u\in\left[ n\right] $ and $v\in\left[
n\right] $, we have
\begin{align*}
\left[ e\in E_{u}\cap E_{v}\right] & =\left[ e\in E_{u}\text{ and }e\in
E_{v}\right] \\
& \qquad\left( \text{since }e\in E_{u}\cap E_{v}\text{ holds if and only if
}\left( e\in E_{u}\text{ and }e\in E_{v}\right) \right) \\
& =\left[ e\in E_{u}\right] \cdot\left[ e\in E_{v}\right]
\end{align*}
(because the rule $\left[ \mathcal{A}\text{ and }\mathcal{B}\right] =\left[
\mathcal{A}\right] \cdot\left[ \mathcal{B}\right] $ holds for any two
statements $\mathcal{A}$ and $\mathcal{B}$) and therefore
\begin{align*}
\dfrac{\left[ e\in E_{u}\cap E_{v}\right] }{\left\vert E_{u}\cup
E_{v}\right\vert }x_{u}x_{v} & =\dfrac{\left[ e\in E_{u}\right]
\cdot\left[ e\in E_{v}\right] }{\left\vert E_{u}\cup E_{v}\right\vert }
x_{u}x_{v}\\
& =\dfrac{\left( \left[ e\in E_{u}\right] x_{u}\right) \cdot\left(
\left[ e\in E_{v}\right] x_{v}\right) }{\left\vert E_{u}\cup E_{v}
\right\vert }.
\end{align*}
Adding up these equalities for all $u\in\left[ n\right] $ and $v\in\left[
n\right] $, we obtain
\begin{align*}
& \sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{\left[
e\in E_{u}\cap E_{v}\right] }{\left\vert E_{u}\cup E_{v}\right\vert }
x_{u}x_{v}\\
& =\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{\left(
\left[ e\in E_{u}\right] x_{u}\right) \cdot\left( \left[ e\in
E_{v}\right] x_{v}\right) }{\left\vert E_{u}\cup E_{v}\right\vert }\geq0
\end{align*}
(by Theorem 4, applied to $\left[ e\in E_{i}\right] x_{i}$ instead of
$x_{i}$). This proves Corollary 5. $\blacksquare$
We next recall a classical fact (I refer to it as "counting by roll call"):
Lemma 6. Let $Q$ be a finite set. Let $F$ be a subset of $Q$. Then,
\begin{align}
\left\vert F\right\vert =\sum_{e\in Q}\left[ e\in F\right] .
\end{align}
Proof of Lemma 6. The sum $\sum_{e\in Q}\left[ e\in F\right] $ has exactly
$\left\vert F\right\vert $ many addends equal to $1$ (namely, all the addends
corresponding to $e\in F$), while all its remaining addends are $0$ and thus
do not influence its value. Hence, $\sum_{e\in Q}\left[ e\in F\right]
=\left\vert F\right\vert \cdot1=\left\vert F\right\vert $. This proves Lemma
6. $\blacksquare$
Theorem 7. Let $n\in\mathbb{N}$. Let $E_{1},E_{2},\ldots,E_{n}$ be $n$
nonempty finite sets. Let $x_{1},x_{2},\ldots,x_{n}$ be $n$ real numbers.
Then,
\begin{align}
\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\dfrac{\left\vert
E_{u}\cap E_{v}\right\vert }{\left\vert E_{u}\cup E_{v}\right\vert }x_{u}
x_{v}\geq0.
\end{align}
Proof of Theorem 7. Let $Q$ be the set $E_{1}\cup E_{2}\cup\cdots\cup E_{n}
$. This is a finite set (since the sets $E_{1},E_{2},\ldots,E_{n}$ are finite).
Fix $u\in\left[ n\right] $ and $v\in\left[ n\right] $. Then, $E_{u}\cap
E_{v}$ is a subset of $Q$ (since $Q=E_{1}\cup E_{2}\cup\cdots\cup E_{n}$).
Hence, Lemma 6 (applied to $F=E_{u}\cap E_{v}$) yields
\begin{align}
\left\vert E_{u}\cap E_{v}\right\vert =\sum_{e\in Q}\left[ e\in E_{u}\cap
E_{v}\right] .
\end{align}
Thus,
\begin{align}
\dfrac{\left\vert E_{u}\cap E_{v}\right\vert }{\left\vert E_{u}\cup
E_{v}\right\vert }x_{u}x_{v} & =\dfrac{\sum_{e\in Q}\left[ e\in E_{u}\cap
E_{v}\right] }{\left\vert E_{u}\cup E_{v}\right\vert }x_{u}x_{v}\nonumber\\
& =\sum_{e\in Q}\dfrac{\left[ e\in E_{u}\cap E_{v}\right] }{\left\vert
E_{u}\cup E_{v}\right\vert }x_{u}x_{v}.
\label{darij1.pf.t7.1}
\tag{4}
\end{align}
Now, forget that we fixed $u$ and $v$. We have
\begin{align*}
& \sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\underbrace{\dfrac
{\left\vert E_{u}\cap E_{v}\right\vert }{\left\vert E_{u}\cup E_{v}\right\vert
}x_{u}x_{v}}_{\substack{=\sum_{e\in Q}\dfrac{\left[ e\in E_{u}\cap
E_{v}\right] }{\left\vert E_{u}\cup E_{v}\right\vert }x_{u}x_{v}\\\text{(by
\eqref{darij1.pf.t7.1})}}}\\
& =\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }\sum_{e\in
Q}\dfrac{\left[ e\in E_{u}\cap E_{v}\right] }{\left\vert E_{u}\cup
E_{v}\right\vert }x_{u}x_{v}=\sum_{e\in Q}\underbrace{\sum_{u\in\left[
n\right] }\sum_{v\in\left[ n\right] }\dfrac{\left[ e\in E_{u}\cap
E_{v}\right] }{\left\vert E_{u}\cup E_{v}\right\vert }x_{u}x_{v}
}_{\substack{\geq0\\\text{(by Corollary 5)}}}\\
& \geq\sum_{e\in Q}0=0.
\end{align*}
This proves Theorem 7. $\blacksquare$
We are now ready for the original question:
Corollary 8. Let $n\in\mathbb{N}$. Let $E_{1},E_{2},\ldots,E_{n}$ be $n$
nonempty finite sets. Let $A$ be the $n\times n$-matrix $\left(
\dfrac{\left\vert E_{u}\cap E_{v}\right\vert }{\left\vert E_{u}\cup
E_{v}\right\vert }\right) _{u,v\in\left[ n\right] }\in\mathbb{R}^{n\times
n}$. Then, $A$ is positive semidefinite.
Proof of Corollary 8. For every $u\in\left[ n\right] $ and $v\in\left[
n\right] $, we have $\dfrac{\left\vert E_{u}\cap E_{v}\right\vert
}{\left\vert E_{u}\cup E_{v}\right\vert }=\dfrac{\left\vert E_{v}\cap
E_{u}\right\vert }{\left\vert E_{v}\cup E_{u}\right\vert }$ (since $E_{u}\cap
E_{v}=E_{v}\cap E_{u}$ and $E_{u}\cup E_{v}=E_{v}\cup E_{u}$). Thus, the
matrix $A$ is symmetric. Hence, in order to prove that $A$ is positive
semidefinite, it suffices to show that $x^{T}Ax\geq0$ for any vector
$x\in\mathbb{R}^{n}$. So let us do this.
Fix $x\in\mathbb{R}^{n}$. We must show that $x^{T}Ax\geq0$. Write the vector
$x\in\mathbb{R}^{n}$ in the form $x=\left( x_{1},x_{2},\ldots,x_{n}\right)
^{T}$ for some real numbers $x_{1},x_{2},\ldots,x_{n}$. Then, the definition
of $A$ yields
\begin{align}
x^{T}Ax=\sum_{u\in\left[ n\right] }\sum_{v\in\left[ n\right] }
\dfrac{\left\vert E_{u}\cap E_{v}\right\vert }{\left\vert E_{u}\cup
E_{v}\right\vert }x_{u}x_{v}\geq0
\end{align}
(by Theorem 7). This completes our proof of Corollary 8. $\blacksquare$