Consider the monomial ideal $I=(vw,wx,xy,yz,zv)$ in the polynomial ring $k[v,w,x,y,z]$. How do we find the height of the ideal $I$ ?
Since $5=\dim k[v,w,x,y,z]=\mathrm{ht}(I)+ \dim (k[v,w,x,y,z]/I)$, so equivalently asking, how to find the Krull dimension of the ring $k[v,w,x,y,z]/I$ ?