To add to Jason’s answer, the Ext groups of an $ R $-module $ A $ can be computed using both injective and projective resolutions. For example, let $ P^{\bullet} $ be a projective resolution of $ A $:
$$
\cdots \longrightarrow P^{2} \longrightarrow P^{1} \longrightarrow P^{0} \longrightarrow A \longrightarrow 0.
$$
Let $ B $ be another $ R $-module. We then have the following (not necessarily exact) sequence:
$$
0 \longrightarrow {\text{Hom}_{R}}(P^{0},B) \longrightarrow {\text{Hom}_{R}}(P^{1},B) \longrightarrow {\text{Hom}_{R}}(P^{2},B) \longrightarrow \cdots.
$$
As you know, computing the homology groups of the sequence above yields the sequence $ ({\text{Ext}_{R}^{n}}(A,B))_{n \in \mathbb{N}_{0}} $ of Ext groups.
Let us start with an injective resolution $ I^{\bullet} $ of $ B $ instead:
$$
0 \longrightarrow B \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow I^{2} \longrightarrow \cdots.
$$
This leads to the following (not necessarily exact) sequence:
$$
0 \longrightarrow {\text{Hom}_{R}}(A,I^{0}) \longrightarrow {\text{Hom}_{R}}(A,I^{1}) \longrightarrow {\text{Hom}_{R}}(A,I^{2}) \longrightarrow \cdots.
$$
Computing the homology groups of this sequence also yields $ ({\text{Ext}_{R}^{n}}(A,B))_{n \in \mathbb{N}_{0}} $ up to isomorphism.