Find $\displaystyle \binom{n}{0}-\binom{n}{1}\frac{1}{4}+\binom{n}{2}\frac{1}{7}+\cdots \cdots $
What I tried:
the sum is $$\sum^{n}_{r=0}(-1)^r\binom{n}{r}\frac{1}{3r+1}$$
$$\sum^{n}_{r=0}(-1)^r\binom{n}{r}\int^{1}_{0}x^{3r}dx$$
$$\int^{1}_{0}\sum^{n}_{r=0}(-1)^r\binom{n}{r}x^{3r}dx$$
How do I solve? Help me, please!