Show that $\cot{142\frac{1}{2} ^\circ} = \sqrt2 + \sqrt3 - 2 - \sqrt6$.
What I have tried:
Let $\theta = 142\frac{1}{2}^\circ \text{ and } 2\theta = 285^\circ$.
$$\cos 285^\circ = \cos 75^\circ$$
$$\cos 75^\circ = \frac{\sqrt3 - 1}{2\sqrt2}$$
$$\cot \theta = \sqrt{\frac{1 + \cos 2\theta}{1 - \cos 2\theta}}$$
From here, pls help me proceed further. Thank you :)