-1

$$\sum _ { n = 1 } ^ { \infty } \tan ^ { -1 } \left( \frac { 4 } { n ^ { 2 } + n + 16 } \right)= \tan ^ { -1 } \left( \frac { \alpha } { 10 } \right)$$ Find $\alpha$.

I know I need to convert to $$\operatorname{arctan}\frac{a-b}{1+ab}$$ ut here I am not able to do so.

Blue
  • 83,939

3 Answers3

4

Use $$\arctan\frac{4}{r^2+r+16}=\arctan\frac{\frac{r+1}{4}-\frac{r}{4}}{1+\frac{r+1}{4}\cdot\frac{r}{4}}$$

0

enter image description here

Check out this solution , hope you understand . Ask if you face any problem

0

Hint:

Let $f(m)=\arctan(am+b),$

$f(n+1)-f(n)$

$=\arctan\dfrac{a(n+1)+b-(an+b)}{1+(an+b)(an+a+b)}$ $=\arctan\dfrac a{a^2n^2+n(2ab+a^2)+ab+b^2+1}$

Compare the coefficients of $n^2,n,n^0$

$$\dfrac a{a^2}=\dfrac41\iff a=\dfrac14$$

$$\dfrac14=\dfrac{2ab+a^2}a=2b+a\iff b=0$$

$$\dfrac4{16}=\dfrac a{ab+b^2+1}=a$$

Try the same for $\sum\limits_{n=1}^{\infty}\arctan{\frac{2}{n^2+n+4}}$

  • https://math.stackexchange.com/questions/193001/explicitly-finding-the-sum-of-arctan1-n2n1 and https://math.stackexchange.com/questions/2789725/evaluating-tan-left-sum-r-1-infty-arctan-left-frac44r2-3-right – lab bhattacharjee Feb 11 '19 at 18:23
  • Here we have assumed that $\arctan$ is expressible in the form $$f(n+1)-f(n)$$ – lab bhattacharjee Feb 19 '19 at 14:53