$$\sum _ { n = 1 } ^ { \infty } \tan ^ { -1 } \left( \frac { 4 } { n ^ { 2 } + n + 16 } \right)= \tan ^ { -1 } \left( \frac { \alpha } { 10 } \right)$$ Find $\alpha$.
I know I need to convert to $$\operatorname{arctan}\frac{a-b}{1+ab}$$ ut here I am not able to do so.
