I want to use the Gram-Schmidt procedure to generate the first three Hermite polynomials. Given the set of linearly independent vectors $\{1,x,x^2,...\}$ in the Hilbert space $L^2(R,e^{-x^2}dx)$, I apply the orthogonalisation procedure as follows:
$u_{0}(x)=1$
$u_{1}(x)=x-\frac{\langle u_{0}|x \rangle}{\langle u_{0}|u_{0}\rangle} \cdot u_{0}=x-\frac{\langle 1|x\rangle}{\langle 1|1\rangle}\cdot 1 =x $
$u_{2}(x)=x^2-\frac{\langle u_{0}|x^2 \rangle}{\langle u_{0}|u_{0}\rangle} \cdot u_{0}-\frac{\langle u_{1}|x^2 \rangle}{\langle u_{1}|u_{1}\rangle} \cdot u_{1}=x^2-\frac{\langle 1|x^2\rangle}{\langle 1|1\rangle}\cdot 1-\frac{\langle x|x^2\rangle}{\langle x|x\rangle}\cdot x =x^2 -\frac{1}{2} $
The inner product I use is the one of $L^2(R,e^{-x^2}dx)$, namely:
$\langle u|v \rangle:=\int_{R}\overline{u(x)}v(x)e^{-x^2}dx$
Then I divide the functions I found by their norm in order to get orthonomal vectors:
$\tilde{H_0}(x)=\frac{1}{\sqrt{\langle u_{0}|u_{0} \rangle}}u_{0}(x)=\frac{1}{\pi^{1/4}}$
$\tilde{H_1}(x)=\frac{1}{\sqrt{\langle u_{1}|u_{1} \rangle}}u_{1}(x)=\frac{\sqrt{2}}{\pi^{1/4}}x$
$\tilde{H_2}(x)=\frac{1}{\sqrt{\langle u_{2}|u_{2} \rangle}}u_{2}(x)=\frac{\sqrt{2}}{\pi^{1/4}}(x^2-\frac{1}{2})$
I can't understand why the coefficients I get are different from the ones that can be found on Wikipedia (https://en.wikipedia.org/wiki/Hermite_polynomials) or in every list of Hermite's polynomials. Where is the mistake?