We compute a recurrence for the number of labeled graphs with $k$
components. With $G(z)$ the EGF of labeled graphs we have
$$G(z) = \sum_{n\ge 0} 2^{n\choose 2} \frac{z^n}{n!}.$$
Here we have included the empty graph on zero nodes. Now the class of
graphs $\mathcal{G}$ is in a set-of relationship with the class
$\mathcal{C}$ of connected components, namely
$$\def\textsc#1{\dosc#1\csod}
\def\dosc#1#2\csod{{\rm #1{\small #2}}}
\bbox[5px,border:2px solid #00A000]{
\mathcal{G} = \textsc{SET}(\mathcal{C}).}$$
The class of graphs $\mathcal{C}_k$ with $k$ connected components is
then given by
$$\mathcal{C}_{k} = \textsc{SET}_{=k}(\mathcal{C}).$$
Translating to generating functions we thus have
$$G(z) = \exp C(z)
\quad\text{or}\quad
C(z) = \log G(z)$$
and
$$\bbox[5px,border:2px solid #00A000]{
C_k(z) = \frac{\log^k G(z)}{k!}.}$$
Differentiating (here $k\ge 1$) we have
$$C_k(z)' = C_{k-1}(z) \frac{G'(z)}{G(z)}
\quad\text{or}\quad
C_k(z)' G(z) = C_{k-1}(z) G'(z).$$
Writing $$C_k(z) = \sum_{n\ge 0} C_{n,k} \frac{z^n}{n!}$$
and extracting coefficients we have
$$[z^{n-1}] C_k(z)' G(z) = [z^{n-1}] C_{k-1}(z) G'(z)$$
which is
$$\sum_{q=0}^{n-1} C_{q+1, k} \frac{1}{q!}
2^{n-1-q\choose 2} \frac{1}{(n-1-q)!}
= \sum_{q=0}^{n-1} C_{q, k-1} \frac{1}{q!}
2^{n-q\choose 2} \frac{1}{(n-1-q)!}.$$
or
$$\sum_{q=0}^{n-1} {n-1\choose q} C_{q+1, k}
2^{n-1-q\choose 2}
= \sum_{q=0}^{n-1} {n-1\choose q} C_{q, k-1}
2^{n-q\choose 2}.$$
This yields the recurrence
$$\bbox[5px,border:2px solid #00A000]{
C_{n, k} = \sum_{q=0}^{n-1} {n-1\choose q} C_{q, k-1}
2^{n-q\choose 2}
- \sum_{q=0}^{n-2} {n-1\choose q} C_{q+1, k}
2^{n-1-q\choose 2}.}$$
The base case is that when $k=0$ and $n=0$ we get the empty graph,
when $k=0$ or $n=0$ but not both we have zero. This yields
for one component the sequence
$$1, 1, 4, 38, 728, 26704, 1866256, 251548592,
\\ 66296291072, 34496488594816, 35641657548953344,
\\ 73354596206766622208, 301272202649664088951808, \ldots $$
which points to OEIS A001187 where the
data are confirmed. Listing the $C_{n,k}$ in order with increasing $k$
for fixed $n$ and increasing $n$ (triangular array) we find
$$1, 1, 1, 4, 3, 1, 38, 19, 6, 1, 728, 230, 55, 10, 1, 26704,
\\ 5098, 825, 125, 15, 1, 1866256, 207536, 20818, 2275, 245,
\\ 21, 1, 251548592, 15891372, 925036, 64673, 5320, 434, 28, 1,
\ldots $$
which points to OEIS A143543, where we get
confirmation once more. The reader who wants to experiment with these
exponential generating functions is invited to consult the following
Maple code.
CGF :=
proc(n, k)
option remember;
local G;
G := add(2^binomial(q,2)*z^q/q!, q=0..n);
n!*coeftayl(log(G)^k/k!, z=0, n);
end;
C :=
proc(n, k)
option remember;
if k = 0 and n = 0 then return 1 fi;
if k = 0 or n = 0 then return 0 fi;
add(binomial(n-1,q)*C(q,k-1)*2^binomial(n-q,2),
q=0..n-1)
- add(binomial(n-1,q)*C(q+1,k)*2^binomial(n-1-q,2),
q=0..n-2);
end;
OEIS := mx -> seq(seq(C(n,k), k=1..n), n=1..mx);
As a sanity check when we compute $\sum_{k=1}^n C_{n,k}$ using the
values from the recurrence we really do obtain $2^{n\choose 2}.$