Prove: $$h(x,y)=A\cdot e^{-2\pi^2(x^2+y^2)}$$ is $$H(u,v)=\frac{A}{\sqrt{2}}\cdot e^{-\frac{u^2+v^2}{2}}$$ After fourier transform
$$F(u,v)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-i2\pi (ux+vy)}dxdy$$
$$H(u,v)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}A\cdot e^{-2\pi^2(x^2+y^2)}e^{-i2\pi (ux+vy)}dxdy$$
$$H(u,v)=A\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-2\pi^2(x^2+y^2)}e^{-i2\pi (ux+vy)}dxdy$$
$$H(u,v)=A\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-2\pi^2x^2-2\pi^2y^2-i2\pi ux -i2\pi vy}dxdy$$
How should I group $-2\pi^2x^2-2\pi^2y^2-i2\pi ux -i2\pi vy$ in order to integrate?