Solve the following PDE
$$ u_{x_1} + u_{x_2} + x_3 u_{x_3} = u^3 $$
with cauchy data $u(x_1,x_2,1) = \phi(x_1,x_2) $. Also, determine the values of $x_1,x_2$ and $x_3$ for which the IVP exists.
Try:
The characteristics are given by
$$ \begin{align*} \frac{dx_1}{ds} &= 1, \; \; \; x(r_1,r_2,0) = r_1 \\ \frac{dx_2}{ds} &= 1, \; \; \; x(r_1,r_2,0) = r_2 \\ \frac{dx_3}{ds} &= x_3, \; \; \; x(r_1,r_2,0) = 1 \\ \frac{d z}{ds} &= z^3, \; \; \; x(r_1,r_2,0) = h(r_1,r_2) \\ \end{align*}$$
We see easily that $x_1(r_1,r_2,s) = s+r_1$ and similarly $x_2 = s + r_2$ and $x_3 = e^s $. Next, we have
$$ \frac{dz}{z^3} = ds \implies - \frac{1}{2 z^2} = s + C \implies -\frac{1}{2h^2} = C $$
Therefore,
$$ z(r_1,r_2,s) = \frac{ 2 |h(r_1,r_2)| }{\sqrt{1 - 2h(r_1,r_2)} } $$
also, notice that $s = \log x_3 $ and so $r_1 = x_1 - \log x_3$ and $r_2 = x_2 - \log x_3$. Therefore, our solution is
$$ u(x_1,x_2,x_3) = \frac{ 2 | h( x_1 - \log x_3, x_2 - \log x_3) |}{\sqrt{1-2h( x_1 - \log x_3, x_2 - \log x_3)}} $$
and the solution exists for all $(x_1,x_2,x_3)$ since
$$ Jac(x_1,x_2,x_3) = 1 \neq 0 $$
Is this a correct solution?