The moduli gcd is $\,d = (8,12) = 4\,$ and $\,4\mid 5-1\,$ so by CRT a solution uniquely exists mod ${\rm lcm}(8,12) $ $ = 8(12)/4 = 24,\,$ computable by $\, ab\bmod ac = a(b\bmod c) = $ $\!\bmod\!$ Distributive Law.
$8\mid x\!-\!1\Rightarrow x\!-\!1\bmod 24 = 8\left[\dfrac{\color{#c00}x\!-\!1}8\!\bmod 3\right] = 8\left[\dfrac{\color{#c00}5\!-\!1}{2 }\!\bmod 3\right]= 16\, $ by $ \begin{align}x&\equiv 5 \!\!\!\pmod{\!12}\\ \Rightarrow\,\color{#c00}x&\equiv \color{#c00}5\!\!\!\pmod{\!3}\end{align}$
Remark $ $ This works generally for $\,x\equiv a\pmod{\!m},\ x\equiv b\pmod{\!n}\,$ when $\,(m,n)=\color{#0a0}{d\mid b\!-\!a}$
$m\mid x\!-\!a\,\Rightarrow\,x\!-\!a\bmod mn/d = m\left[\dfrac{x-a}m\bmod n/d\right] = m\left[\dfrac{b-a}m\bmod n/d\right] $
Note $\,d\mid b\!-\!a\,\Rightarrow\, \dfrac{b-a}m = \dfrac{\color{#0a0}{(b-a)/d}}{m/d}$ and $\,m/d\,$ is invertible $\!\bmod n/d\,$ by $\,(m/d,n/d)= 1,\,$ thus the fraction exists $\bmod n/d$.