How does one solve the following problem (matrix $2$-norm and diagonal matrix constraint) analytically?
$$\hat b = \arg \min_{b} f \left( b \right)$$ such that $$f \left( b \right) = \left\|A- {F}^{*} \operatorname{diag} \left( b \right) {F} \right\|_{2}= \sigma_1(A- {F}^{*} \operatorname{diag} \left( b \right) {F} )$$ where, $A$ is a square matrix (size: m $\times$ m), $F$ is a tall matrix (size: n $\times$ m) and $b$ is a vector (size: n), $\sigma_1(A- {F}^{*} \operatorname{diag} \left( b \right) {F} )$ the maximum singular value of a matrix given by $A- {F}^{*} \operatorname{diag} \left( b \right) {F} $.
P.S: $\left\| \cdot \right\|_{2}$ is the matrix-2 norm (operator norm) and $ *$ is the conjugate transpose.
The set of diagonal matrices $\mathcal{B} = \left\{ B\in \mathbb{R}^{n \times n} \mid B = \operatorname{diag}\left( b \right) \right\}$ is a convex set (Because any linear combination of diagonal matrices is also a diagonal matrix).