I have a complex Gaussian vector $\mathbf{x} \triangleq (x_1; x_2; ...; x_n) \in \mathbb{C}^{n \times 1}$, where $x_i \sim \mathbb{CN}(0,1)$ i.i.d., and $\mathbf{y} \triangleq (y_1;y_2;..;y_n)\in \mathbb{C}^{n \times 1}$, where $y_i = \frac{x_i}{||x||}$. What is the expectation of the product of $\mathbf{y}$ and $\mathbf{y}^{H}$, i.e., $\mathbb{E}\{ \mathbf{y}\mathbf{y}^{H} \}$? Here, $\mathbf{y}^{H}$ denotes the hermitian transpose of $\mathbf{y}$, and $\mathbb{E}\{ \cdot \}$ denotes the expectation matrix which contains the expectation for each element in $\mathbf{y}\mathbf{y}^{H}$. Or what is the expectation of the product of ${y}_i$ and ${y}^{H}_j$, i.e., $\mathbb{E}\{{y}_i{y}^{H}_j\}$?
According to this question, I know that $\mathbf{y}$ is uniformly distributed on a unit sphere, but I have no idea what $\mathbb{E}\{ \mathbf{y}\mathbf{y}^{H} \}$ and $\mathbb{E}\{{y}_i{y}^{H}_j\}$ ($i = j $ or $i \neq j$) is, or how to calculate them. Could someone show me the exact computations?
Thanks!