1

Find the determinant $\Delta_n$

$A_n = \begin{bmatrix} 0 & 1 & 0 &\dots &\dots&0\\ -1 & 0 &1 & 0&&\vdots\\ 0&-1 & 0 &1 &\ddots&\vdots\\ \vdots& & & &\ddots&0\\ \vdots& & \ddots &\ddots &\ddots&1\\ 0 & \dots & \dots &0&-1&0 \end{bmatrix} \in M_n(\mathbb{K})$

After doing some tests I conclude $\Delta_n$ is $0$ if $n$ is odd and $1$ if $n$ is even. How can I prove it formally? Any hint?

1 Answers1

2

Hint:

Expanding by the last row, prove that $$\Delta_n=\begin{vmatrix}0&1&0&\dots&0&0&0 \\ -1&0&1&\dots&0&0&0 \\ 0&-1& 0 & \cdots&0&0&0\\ \vdots&&& \vdots &&&\vdots \\0&0&0&\cdots&0&1&0 \\0&0&0&\dots&-1&0&0 \\0&0&0&\dots&0&-1&1\end{vmatrix}=\Delta_{n-2} \;\text{ (expanding by the last column)}$$

Bernard
  • 179,256