Let $f$ be a function on $[0,1]$ into $\Bbb{R}$. Suppose that if $x\in[0,1],$ there exists $K_x$ such that \begin{align}|f(x)-f(y)|\leq K_x |x-y|,\;\;\forall\;\;y\in[0,1].\end{align} Prove or disprove that there exists $K$ such that \begin{align}|f(x)-f(y)|\leq K |x-y|,\;\forall\;\;x,y\in[0,1].\end{align}
DISPROOF
Consider the function \begin{align} f:[0&,1]\to \Bbb{R}, \\&x\mapsto \sqrt{x} \end{align}
Let $x=0$ and $y\in (0,1]$ be fixed. Then, \begin{align} \left| f(0)-f(y) \right|&=\left|0-\sqrt{y} \right| \end{align} Take $y=1/(4n^2)$ for all $n.$ Then, \begin{align} \left| f(0)-f\left(\dfrac{1}{4n^2}\right) \right|&=\left|0-\dfrac{1}{\sqrt{4n^2}} \right| \\&=2n^{3/2}\left|\dfrac{1}{4n^2} -0 \right| \end{align} By assumption, there exists $K_0$ such that \begin{align} \left| f(0)-f\left(\dfrac{1}{4n^2}\right) \right|&=2n^{3/2}\left|\dfrac{1}{4n^2} -0 \right|\leq K_0\left|\dfrac{1}{4n^2} -0 \right| \end{align} Sending $n\to\infty,$ we have \begin{align} \infty \leq K_0<\infty,\;\;\text{contradiction}. \end{align} Hence, the function $f$ is not Lipschitz in $[0,1]$.
QUESTION: Is my disproof correct?