Let $V$ be a real $n$-dimensional vector space, and let $W \le \bigwedge^k V$ be a subspace . Suppose that $\dim W \ge 2$. Does $W$ contain a non-zero decomposable element?
If $\dim W=1$, then clearly we can take $W=\text{span} (\sigma)$ for some non-decomposable $\sigma \in \bigwedge^k V$.