Let $p\neq 2,5$ be prime. I wish to show that: $x^2 +5y^2 = p \Leftrightarrow p\equiv 1,9 $ mod $(20)$.
I proved to $\Rightarrow$ part, means $x^2 +5y^2=p \Rightarrow p\equiv 1,9 $ mod $(20)$.
For $\Leftarrow$ , $p\equiv 1,9(20) \Rightarrow p\equiv 1(4)$ , $p\equiv1 ,4 (5)$ thus $(\frac{4}{p})=1,(\frac{-1}{p}) =1$ (using legendre symbols) , also $(\frac{5}{p})=_{p\equiv1(4)}(\frac{p}{5})$ and $p\equiv1(5)$ so $(\frac{5}{p})=1$ , so $(\frac{-20}{p})=(\frac{5}{p})(\frac{4}{p})(\frac{-1}{p}) = 1$. So $-20$ is a quadratic residue mod $p$.
Yet I don't succeed to go on from this point (I don't know even if its possible to do so).