I have the following attempt.
Let $x=-y$ then ${y \to 0+}$ as ${x \to 0-}$.
So, $\displaystyle\lim_{x \to 0-} {x}^{x}$= $\displaystyle\lim_{y \to 0+} {(-y)}^{(-y)} = \displaystyle\lim_{y \to 0+} \dfrac{1}{{(-y)}^{y}}= \displaystyle\lim_{y \to 0+} \dfrac{1}{{(-1)}^{y}.{y}^{y}}=\displaystyle\lim_{y \to 0+} \dfrac{1}{{y}^{y}}$
Now as, $\displaystyle\lim_{y \to 0+} y^y =\displaystyle\lim_{y \to 0+} {e}^{y\ln{y}} = {e}^{\displaystyle\lim_{y \to 0+} y\ln{y}}={e}^{\displaystyle\lim_{y \to 0+} \frac{\ln{y}}{\frac{1}{y}}} = {e}^{\displaystyle\lim_{y \to 0+} \frac{\frac{1}{y}}{{-\frac{1}{y^2}}}} = {e}^{\displaystyle\lim_{y \to 0+} {-y}}=e^{0}=1$
Hence $\displaystyle\lim_{y \to 0+} \dfrac{1}{{y}^{y}}=\dfrac{1}{1}=1$
So, $\displaystyle\lim_{x \to 0-} {x}^{x}=1$
Is it correct?