Decimal integer long division algorithm $ $ Write the dividend as $\, n = a \,10^{\large k}\! +b \,$ where $\, a> d = $ divisor. Divide $\,a\,$ by $\,d$ $\rightarrow \color{#c00}{ a = q\,d + r}.\ $ Then
$$\dfrac{n}d\ =\ \dfrac{\color{#c00}a\,10^{\large k} + b}d\ =\ \dfrac{(\color{#c00}{qd+r})10^{\large k} + b}{d}\ =\ \color{#c00}q\, 10^{\large k} +\!\!\! \underbrace{\dfrac{\color{#c00}r10^{\large k}+b}d}_{\large\rm \color{#0a0}{recurse}\ on\ this} $$
Next $\rm\color{#0a0}{recursively}$ apply the algorithm to the indicate fraction (with smaller numerator).
Usually we choose $a$ minimal, but we can choose any value of $\,a>d\,$ (it may simplify division)
Scaling by powers of $10$ allows us to reduce any division of decimals to the above integer case (this is implicit in the usual tabular implementation of the algorithm).