1

Find the sum of the first $50$ terms of the series $$\cot^{-1}3+\cot^{-1}7+\cot^{-1}13+\cot^{-1}21+.....$$

$$ \sum_1^{50}=\cot^{-1}3+\cot^{-1}7+\cot^{-1}13+\cot^{-1}21+.....\\ =\tan^{-1}\frac{1}{3}+\tan^{-1}\frac{1}{7}+\tan^{-1}\frac{1}{13}+\tan^{-1}\frac{1}{21}+.....= $$ My reference gives the solution $\tan^{-1}\dfrac{5}{6}$, but I do not have any clue of doing it ?

Note: I know that $\tan^{-1}x+\tan^{-1}y=\tan^{-1}\dfrac{x+y}{1-xy}$ if $xy<1$.

SOORAJ SOMAN
  • 8,038

1 Answers1

9

Hint

  • Use the fact that $\cot^{-1}(x)=\tan^{-1}\frac{1}{x}$

  • $\tan^{-1}\left(\frac{1}{n^2+n+1}\right) = \tan^{-1}\left(\frac{(n+1)-n}{1+n(n+1)}\right) =\tan^{-1}(n+1) -\tan^{-1}(n)$

C.S.
  • 5,548