I tried to prove $$\sum\limits_{r=0}^n\binom{n}{r}=\sum\limits_{r=0}^n \frac{n!}{r!(n-r)!} =2^n.$$
I used induction method:
Assuming $$\sum\limits_{r=0}^n \frac{n!}{r!(n-r)!} =2^{n}.$$
Proving $$\sum\limits_{r=0}^{n+1} \frac{{(n+1)}!}{r!(n+1-r)!} =2^{n+1}.$$
I got $$\sum\limits_{r=0}^{n+1} \frac{{(n+1)}!}{r!(n+1-r)!} =\sum\limits_{r=0}^{n+1} \Bigl(\frac{n!}{r!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!}\Bigr),$$ and an invalid term appeared: $(-1)!$.
How does one prove this identity, and what's wrong with my method?