-1

I do not know how to approach this integration problem. $$ \int_{-1}^{1} \frac{1}{(e^x+1)(x^2+1)} $$ I tried some trigonometric change of variable and also tried to break it into two fractions but I failed!

Emilio Novati
  • 64,377
Dandelion
  • 173
  • How about breaking the integral into two integrals, over the non-negative $x$ and the non-positive $x$, and combining them suitably? – Aphelli Dec 13 '18 at 19:36
  • 1
    Another one https://math.stackexchange.com/q/1805550/42969 – both found with Approach0 – Martin R Dec 13 '18 at 19:48
  • $\displaystyle\mathrm{f}\left(,{x},\right) \equiv {1 \over \mathrm{e}^{x} + 1} = \Theta\left(,{-x},\right) + ,\mathrm{sgn}\left(,{x},\right),\mathrm{f}\left(,{\left\vert, x,\right\vert},\right).\quad\Theta$ is the Heaviside Step Function. – Felix Marin Dec 13 '18 at 21:31

1 Answers1

5

$\displaystyle I=\int_{-1}^{1}\frac{dx}{(e^x+1)(x^2+1)}$

We know that $\int_a^bf(x)dx=\int_a^bf(a+b-x)dx$

$\displaystyle\implies I=\int_{-1}^1\frac{dx}{(e^{-x}+1)(x^2+1)}=\int_{-1}^1\frac{e^xdx}{(e^x+1)(x^2+1)}$

$\displaystyle\implies I+I=2I=\int_{-1}^1\frac{(e^x+1)dx}{(e^x+1)(x^2+1)}=\int_{-1}^1\frac{dx}{x^2+1}=2\int_0^1\frac{dx}{x^2+1}=2\tan^{-1}(1)$

which gives $I=\pi/4$

Shubham Johri
  • 17,739