Given $X=Exp(\lambda)$, i have to define $Y=ceil(X)$ in order to prove the link between exponential and geometric variables.
By definition of ceiling $\forall x\in \mathbb{R},\exists n\in \mathbb{N}:x\leq n< x+1$, so:
$\mathbb{P}(Y=n)=\mathbb{P}(n-1< X\leq n)=\mathbb{P}(X\leq n)-\mathbb{P}(X<n-1)=F_X(n)-F_X(n-1)=Exp(n)-Exp(n-1)=1-e^{-\lambda n}-1+e^{-\lambda (n-1)}=e^{-\lambda n}(e^{\lambda}-1)$.
Nevertheless, the result is $e^{-\lambda n}(1-e^{-\lambda})\Rightarrow Y\sim Geo(1-e^{-\lambda})$.
1) Where i wrong in the passages?
2) Geometric variable has $n-1$ at the exponent, not $n$. So, why that result?
Thanks for any help!