Let $a,b,c$ be positive real numbers. Prove that $$\Big({a\over a+b}\Big)^3+\Big({b\over b+c}\Big)^3+ \Big({c\over c+a}\Big)^3\geq {3\over 8}$$
If we put $x=b/a$, $y= c/b$ and $z=a/c$ we get $xyz=1$ and
$$\Big({1\over 1+x}\Big)^3+\Big({1\over 1+y}\Big)^3+ \Big({1\over 1+z}\Big)^3\geq {3\over 8}$$
Since $f(x)=\Big({1\over 1+x}\Big)^3$ is convex we get, by Jensen,: $$\Big({1\over 1+x}\Big)^3+\Big({1\over 1+y}\Big)^3+ \Big({1\over 1+z}\Big)^3\geq 3f({x+y+z\over 3})$$
Unfortunately, since $f$ is decreasing we don't have $f({x+y+z\over 3}) \geq f(1) = {1\over 8}$.
Some idea how to solve this?