I know that if $S$ is a graded ring, and $f$ is a homogeneous element of positive degree, then there is a bijection between the homogeneous prime ideals of the localization $S_f$ and the prime ideals of $S_{(f)}$, the subring of $S_f$ comprising the homogeneous elements of degree $0$ such as from this MSE question. How can I prove that this bijection gives rise to an isomorphism of the following rings: for a homogenous prime ideal $P$ of $S$ with $f \notin P$, there is an isomorphism
$$S_{(P)} \cong [S_{(f)}]_{P S_f \cap S_{(f)}}.$$
Is this true? If yes, what is this isomorphism? In other words, how do I lift the bijection between prime ideals mentioned above, to elements in the prime ideals related by this bijection. Here $S_{(P)}$ is the subring of degree $0$ elements of the localization $S_{P}$ like always.