Let $S^1=\{z \in \mathbb{C} : |z|=1\}$, which is a group under multiplication of functions. For a group $G$ define $G^*=Hom(G,S^1)$, the character group of $G$. Prove that $G^*$ is indeed a group under multiplication of functions. Prove:
$a) (A\oplus B)^* \cong A^* \oplus B^*.$
$b)$ If $G$ is a finite abelian group then $G \cong G^*$.
$c)$ Let $G$ be a finite abelian group and $H$ a subgroup of $G$. Show that there is a subgroup $N$ of $G$ such that $G/N \cong H$. Similarily, if $H$ is isomorphic to a quotient group $G$ then $H$ is isomorphic to a subgroup of $G$.
I need help with c), I am not sure if a),b) are correct.
Solution: First we show $G^*$ is a group under multiplication.
Identity: $\mathbb{1}:= \mathbb{1}(a)=1 \in G^*$ is the identity element in $G^*$ as if $f \in G^*$, $(f*\mathbb{1})(a)=f(a)*1=f(a)=1*f(a)=(\mathbb{1}*f)(a)$.
Associativity: let $f,g,h \in G^*$, $((f*g)*h)(a)= (f(a)*g(a))*h(a)=f(a)*(g(a)*h(a))=(f*(g*h))(a)$.
Inverse: Let $f \in G^*$, then let $f^{-1}(a):=f(a)^{-1}$, we show $f^{-1}$ is a homomorpism: $f^{-1}(0)=f(0)^{-1}=1^{-1}=1$, $f^{-1}(a+b)=f(a+b)^{-1}=(f(a)f(b))^{-1}=f(a)^{-1}f(b)^{-1}=f^{-1}(a)f^{-1}(b)$.
Hence, $G^{*}$ is a group under multiplication.
a) Consider the map $\phi: (A\oplus B)^* \rightarrow A^* \oplus B^*$ by $\phi(f)=(f|_{A},f|_B)$, it is an isomorphism.
b) Let $G$ be a finite abelian group, then $G \cong \oplus_{1}^{n}\mathbb{Z}_p$, by $2)$, $G^* \cong \oplus_{1}^{n}\mathbb{Z}_p^* \cong \oplus_1^n\mathbb{Z}_p$.