Find the general term of the sequence defined by:
$a_n = 2a_{n-1} + 1$ where $a_1$ is given
Thank You
Find the general term of the sequence defined by:
$a_n = 2a_{n-1} + 1$ where $a_1$ is given
Thank You
Consider : $ a_{n}=b_n +c$, the recurrence relation would be :
$b_n+c=2b_{n-1}+2c+1$
$b_n=2b_{n-1}+c+1$
what if $c=-1$ ? notice that we can assume that $c$ equals any number since we always can have a sequence $b_n$ satisfying the first equality : $a_n=b_n+c$.
$b_n=2b_{n-1} \Longrightarrow b_n=b_0 2^n \ \ $ (Geometric sequence)
Hence, $a_n=b_n+c=b_n-1=b_02^n-1$
$\displaystyle a_1=2b_0-1 \Longleftrightarrow b_0= \frac{a_1+1}{2} $
Finally, you get :
$\displaystyle a_n= \left(\frac{a_1+1}{2}\right)2^n-1 $
$ \begin{align*} a_n &= 2a_{n-1} + 1 = 2(2a_{n-2} + 1) + 1 = 2^2a_{n-2} + (1 + 2) = 2^2(2a_{n-3} + 1) + (2^0 + 2^1) \\ &= 2^3a_{n-3} + (2^0 + 2^1 + 2^2) \\ &= 2^na_0 + (2^0 + 2^1 + \dots + 2^{n-1}) \\ &= 2^na_0 + 2^n -1 \end{align*} $
Without the value of the first term $a_0$, this is the best you can get.
Specifically, show us your partial work, or at least explain better your doubts about the problem.
– Andrea Orta Feb 09 '13 at 09:27