We consider the experience : toss two fair coin simultaneously. Let $$\mathcal F=\sigma\Big(\big\{(H,T),(T,H)\big\},\{(H,H)\},\{(T,T)\}\Big),$$ and $$\mathbb P\{(H,H)\}=\mathbb P\{(T,T)\}=1/4\quad \text{and}\quad \mathbb P\{(H,T),(T,H)\}=1/2.$$
What is $$\mathbb E[\boldsymbol 1_{\{(T,H)\}}\mid \mathcal F]\ \ ?$$
I know that it's the best approximation of $\boldsymbol 1_{\{(H,T)\}}$ knowing $\mathcal F$, but I really don't know how to compute it.
I know that $$\mathbb E[X\mid Y=y_i]=\frac{1}{\mathbb P\{Y=y_i\}}\mathbb E[X\boldsymbol 1_{Y=y_1}],$$ or $$\mathbb E[X\mid Y]=\sum_{y}\frac{1}{\mathbb P\{Y=y\}}\mathbb E[X\boldsymbol 1_{\{Y=y\}}]$$ but I can't use this formula here, do I ?