If $f: \emptyset \rightarrow \emptyset$, that is:
- $\forall a \in \emptyset \Rightarrow \exists b\in \emptyset, (a,b)\in \emptyset \times \emptyset$. But how we can say, that for non-existing element exist another non-existing element?
- $\forall (a_1,b_1),(a_2,b_2) \in {\emptyset}^2$, either $a_1 \neq a_2$ or $b_1 \neq b_2$. But if element non-existing, we can say, that $\neg(a_1 \neq a_2$ or $b_1 \neq b_2)$ is true too, no? And this is saying us, that this is $f$ is a function and not a function at one moment, no?
- The subset of $\emptyset \subset \emptyset \times \emptyset $ exist and the $G_f = \emptyset$
So if this function exist $\Rightarrow$ that this function is only one, becouse $G_f = \emptyset$ and $\emptyset$ is only one in the Set Theory, yes? And because in power set of $\emptyset$ exist only one element -- $\{\emptyset\} = 2^0$.
So, after this we can say, that $0^0 = 1$, yes? Like that for all numbers in $\mathbb{R}$ will be true, that $r^0 = 1$, because for all elements of the family $\{X_{\alpha}\}$ of the sets with $r$-power : $\forall X\in \{X_{\alpha}\} \Rightarrow |X| = r$ exist only one function $f_r: \emptyset \rightarrow X$. But why this function only one? How can exist the element in $\emptyset \times X$?
And why the function $f_{\emptyset} : X\rightarrow \emptyset$ non-existing? The subset of $G_{f_r}\subset \emptyset\times X$ exist but the subset of $G_{f_{\emptyset}}\subset X\times \emptyset$ non-exist? I know, that $0^r$ always $= 0$ but cannot understand it in this situation