If $B=\{ 2+x,1+2x\}$ and $C=\{ 1+x, 1-x\}$ are 2 basis for $P_1$, and $v=-3x+4$ find $[v]_B$, $_BP_C$ and $[v]_C$.
my attempt: Since $B$ is a basis for $V$, then any $v\in B$ can be written "uniquely" as a linear combination of the vectors of $B$.
then $v=-3x+4$ can be written uniquely in the form:
$-3x+4=c_1(2+x)+c_2(1+2x)$ where $c_1$ and $c_2$ are scalars.
$-3x+4=c_1(2+x)+c_2(1+2x)$
$=2c_1+c_2+(c_1+2c_2)x$
Then
$2c_1+c_2=4$
$c_1+2c_2=-3$
and by solving this system, we have
$c_1=\frac{11}{3}$ and $c_2=\frac{-10}{3}$
so, $[v]_B=$ $\left[ {\begin{array}{c} \frac{11}{3} \\ \frac{-10}{3} \end{array} } \right] $
The transition matrix from $B$ to $C$ is
$_BP_C=$ $\left[ {\begin{array}{cc} [2+x]_C & [1+2x]_C \end{array} } \right] $
we can find $[2+x]_c$ as follows
$2+x=\alpha_1(1+x)+\alpha_2(1-x)$
$=(\alpha_1+\alpha_2)+(\alpha_1-\alpha_2)x$
and hence
$\alpha_1+\alpha_2=2$
$\alpha_1-\alpha_2=1$
and by solving this system we get that
$\alpha_1=\frac{3}{2}$ and $\alpha_1=\frac{1}{2}$
Similarly,
$1+2x=\alpha_1(1+x)+\alpha_2(1-x)$
$=(\alpha_1+\alpha_2)+(\alpha_1-\alpha_2)x$
and hence
$\alpha_1+\alpha_2=1$
$\alpha_1-\alpha_2=2$
and by solving this system we get that
$\alpha_1=\frac{3}{2}$ and $\alpha_1=\frac{-1}{2}$
$_CP_B=\left[ {\begin{array}{cc} \frac{3}{2} & \frac{3}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{array} } \right] $
or, $_CP_B=\left[ {\begin{array}{cc} \frac{3}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{array} } \right] $
what is the true?
and we know that
$[v]_C=_BP_C[v]_B$
$[v]_C=\left[ {\begin{array}{cc} \frac{3}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{array} } \right]$ $\left[ {\begin{array}{c} \frac{11}{3} \\ \frac{-10}{3} \end{array} } \right] $
$= \left[ {\begin{array}{c} \frac{1}{2} \\ \frac{7}{2} \end{array} } \right] $
and if I use $_CP_B=\left[ {\begin{array}{cc} \frac{3}{2} & \frac{3}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{array} } \right] $
I got that $= \left[ {\begin{array}{c} \frac{1}{2} \\ \frac{7}{2} \end{array} } \right] $
what is the true please? Thanks.