Let $A$ be a matrix.
Let $\sigma_{\text{min}}(A)$ be the minimal singular value of $A$, and $\lambda_{\text{min}}(A)$ be the minimal eigenvalue of $A$.
Show we have this inequality :
$$\sigma_{\text{min}}(A) < |\lambda_{\text{min}}(A)|$$
Let $A$ be a matrix.
Let $\sigma_{\text{min}}(A)$ be the minimal singular value of $A$, and $\lambda_{\text{min}}(A)$ be the minimal eigenvalue of $A$.
Show we have this inequality :
$$\sigma_{\text{min}}(A) < |\lambda_{\text{min}}(A)|$$