0

Let $A$ be a matrix.

Let $\sigma_{\text{min}}(A)$ be the minimal singular value of $A$, and $\lambda_{\text{min}}(A)$ be the minimal eigenvalue of $A$.

Show we have this inequality :

$$\sigma_{\text{min}}(A) < |\lambda_{\text{min}}(A)|$$

P. Quinton
  • 6,249

0 Answers0