I would like to know whether the trace of the inverse of a symmetric positive definite matrix $\mathrm{trace}(S^{-1})$ is convex.
Actually, I know that the trace of a symmetric positive definite matrix $S \in M_{m,m}$ is convex since we can find $B \in M_{n,m}$ such that $S=B^T B$ then we can write the trace as the sum of scalar quadratic forms, i.e.,
$$ \operatorname{trace}(S) = \operatorname{trace} \left( B^T B \right) = \sum_{j=1}^m b_j^T b_j$$
where $b_j$ is the $j^{th}$ column of $B$. For instance, if we have
$$ \operatorname{trace} \left( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix} + \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 3\\ 4 \end{bmatrix} = 30 $$
And, thus, I wonder if $S \mapsto \operatorname{trace} \left( S^{-1} \right)$ is convex, too.