Let $X = \mathcal{C} \left( [0,1] \right)$ be the Banach space of continuous functions on $[0,1]$ (with the supremum norm) and define a map $F : X \rightarrow X$ by $$F(f)(x) = \int^{x}_{0} \cos(f(t)^{2})dt, x \in [0,1].$$
Show that $F$ is Fréchet differentiable and compute the Fréchet derivative $DF|_{f}$ for each $f \in X.$
So far I have the following.
Using the identity $\cos(A+\varepsilon B)=\cos(A)-\varepsilon B\sin(A)+\mathcal{O}(\varepsilon^2).$ We have \begin{align*}F(f+h)(x) &=\int^{x}_{0} \cos((f(t)+h(t))^{2})dt \\ &=\int^{x}_{0}\cos(f^2(t))-h(t)[2f(t)h(t)]\sin(f^2(t))+\mathcal{O}(h^2(t))dt \\ &=F(f)(x)+\int^{x}_{0}-2f(t)(h(t)\text{sin}(f^2(t))-h^2(t)\sin(f^2(t))+\mathcal{O}(h^2(t))dt \\ \end{align*} Let $T(h)=\int^{x}_{0}-2f(t)(h(t)\sin(f^2(t))dt$. I am able to show that $T(h)$ is a linear map. Then we have $$F(f+h)(x)-F(f)(x)=T(h)+\int^{x}_{0}\mathcal{O}(h^2(t))dt $$ I am confused about the Big-$\mathcal{O}$ notation and I do not understand what it would mean to integrate over it. Also, am I on the right track? Thank you in advance for any help provided.